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INTRODUCTION 

The increased requirement for road and highway construc­

tion has resulted in the need for the stabilization of 

natural or in-place soils to produce a product which will 

serve effectively as a subbase, base, or surface course. 

This is especially true in locations where local aggregate 

sources are scarce or unavailable. 

In recent years soil-cement has become one of the most 

widely used methods of soil stabilization. Soil-cement can 

be defined as a mechanically compacted mixture of pulverized 

soil, portland cement, and water which forms a hard, durable, 

structural material as the cement hydrates. From the first 

20,000 square yard scientifically controlled road built near 

Johnsonville, S. C. in 1935, soil-cement has grown to an 

annual use in the United States of over 80,000,000 square 

yards. It has also been successfully used in over 30 other 

countries. 

The minimum cement requirement of a soil is usually 

determined on the basis of laboratory tests of strength- and 

durability. These tests include unconfined compressive 

strength evaluation, wet-dry and freeze-thaw tests. The most 

widely used freeze-thaw test is A.A.S.H.O. Method T 136-57 

and A.S.T.M. Method D 560-57 (1, 2). 

Compressive strength tests are usually supplementary to 
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the wet-dry and freeze-thaw tests. An adequately hardened 

soil-cement mixture will increase in compressive strength 

with time of curing. Generally an increasing unconfined com­

pressive strength of 300 psi or more at 7 days moist curing 

will pass the wet-dry and freeze-thaw tests satisfactorily 

(28) .  

The wet-dry and freeze-thaw tests are usually considered 

indicative of the structural competence and durability of 

soil-cement mixtures. The wet-dry test produces high shrink­

age stresses. The freeze-thaw test produces high expansive 

stresses. These tests were developed to introduce destructive 

forces which a soil alone could not withstand, but which a 

structural material would resist. Thus they are more valu­

able in analyzing a soil-cement mixture as a structural 

material rather than as a direct criterion of durability. 

The adequacy of a soil-cement mixture as a structural material 

would also confirm its ability to withstand weathering (6). 

The freeze-thaw test is generally the critical test in 

determining the required cement content except for mixtures 

which contain relatively large amounts of silt and clay. For 

mixtures other than these it is standard practice to mold 

only one wet-dry specimen at the median cement content, while 

a freeze-thaw specimen for each cement content investigated 

is usually molded (28). Thus the freeze-thaw test is the 

major test in the evaluation of a soil-cement mixture, and 



www.manaraa.com

3 

requires considerable time and labor to conduct. 

As reported by the "Committee on Soil-Portland Cement 

Stabilization" of the Highway Research Board, two of the 

needed areas of soil-cement research and development are 

better and more practical laboratory tests and the improve­

ment of the freeze-thaw test (17). The present investigation 

attempts to explore these areas to develop more efficient 

methods of freeze-thaw testing. The objectives of this in­

vestigation are: 

1. The development of a relationship which will improve 

the quality of the freeze-thaw test. 

2. The determination of methods to reduce both the 

number of cement contents to be tested and the 

number of freeze-thaw cycles to be conducted, while 

still maintaining the present level of significance 

of the test. 
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REVIEW OF PREVIOUS WORK 

Portland Cement 

Portland cement is the product obtained by finely pul­

verizing clinker produced by calcining to incipient fusion an 

intimate and properly proportioned mixture of argillaceous 

and calcareous materials. The major components of portland 

cement are tricalcium silicate (3CaO'SiO^), dicalcium silicate 

(ZCaO'SiOg), tricalcium aluminate (SCaO-Al^O^) and tetracal-

cium aluminof errite (4CaO• A^Og • F^Og) > usually abbreviated 

CgSj CgS, CgA and C^AF respectively. A typical component 

analysis of "normal" type I portland cement consists of the 

following (31): 

CgS 50% 

CgS 25% 

CgA 12% 

Ĉ AF 8% 

CaSO^ 3% 

CaO 1% 

MgO 1% 

Type I cement is ground so that at least 90% will pass a #200 

sieve. Gypsum (CaS04) is intentionally added during grinding 

to slow the hardening process. 
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Upon the addition of water and thorough mixing the 

process of hydration produces crystallite particles of the 

class and Ca(OH)2, as shown by a typical reaction 

(5): 

C3S + 3H20 = C2S-2H20 + Ca(0H)2 

C2S produces the same hydration products; but the amount of 

hydrated lime formed is less, and the rate of hydration is 

lower. It has been evaluated that CgS is largely responsible 

for the strength up to 28 days, and C2S contributes to the 

long term strength gain. At the end of one year the strength 

contributions of CgS and C2S are about equal. CgA also con­

tributes to strength gain; however, because of the undesirable 

high heat of hydration of CgA, gypsum and sometimes iron com­

pounds are added to make the CgA relatively inert during 

early cement hydration. C^AF approximates the composition of 

the ferrite phase as found in commercial clinkers, and is of 

minor importance to strength. 

By adjusting the percentages of various components or 

adding others, portland cement can be given such various de­

sirable characteristics as rapid hardening (type III), low 

heat during hydration (type IV), and resistance to sulphates 

(type V). Types I and III cement are in most general use for 

soil-cement. Type I I I  cement is made by increasing the CgS 

content and the fine grinding so that at least 99.5% of the 

cement pass a #325 sieve. Type III cements have the dis-
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advantage of a high heat of hydration, which makes them 

unsuitable for many projects. 

Hardening Mechanism of Soil-Cement 

The addition of portland cement to soil produces defi­

nite changes in the properties and structure of the soil. In 

cohesive soils the first change that occurs is the reduction 

of plasticity. This is probably caused by the release of 

calcium ions dufing the initial hydration stages. The posi­

tively charged calcium ions are adsorbed on the negatively 

charged clay surface. This causes attraction between clay 

particles and, therefore, flocculation. Recent research (16) 

has indicated that the high pH and calcium ion concentration 

liberated during the- cement hydration could initiate attack 

of the clay particles causing the breakdown of amorphous 

silica and alumina. This could combine with calcium in a 

pozzolanic-type reaction to form a secondary cementitious 

material. Thus a clay-cement skeleton and a clay matrix would 

result. In sandy soils the grains become cemented at points 

of contact. Catton (6) explains the mechanism as follows: 

Study of soil-cement mixtures in the laboratory and 
field indicates that each cement grain picks up a 
varying number of soil grains (depending on the 
grain size of the soil) and as the cement hydrates 
and crystallizes, a new and larger soil grain or 
agglomeration is produced. As more and more cement 
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is added, more soil grains lose their identity to 
become larger soil grains or agglomerations. These 
agglomerations of cement grains and soil grains can 
also be thought of as links in a chain, and when 
enough cement has been added to link all agglom­
erations together, with pockets of trapped soil, 
the mixture becomes a structural material rather 
than a soil. 

Bezruk (4) concluded that the degree of strength and 

water durability depends basically on the properties and 

amount of cementing material. The more reactive the cement­

ing material and the greater its amount, the higher will be 

the strength of the stabilized soil. The interaction of 

cement with soil may be of a beneficial, detrimental or 

neutral character. Variation of the colloidal properties of 

soil favorable to interaction with cement increases the 

strength of the stabilized soil. 

Microscopic studies indicate that individual particles 

as well as soil microaggregations take part in the reaction 

of cement with soil as follows (4): 

The cementing material becomes distributed in the 
soil-cement mass as a latticed soil-cement skeleton 
with thin films enveloping the microaggregations of 
the soil. In the presence in the soil of a water-
resistant microstructure the specific surface of 
finely dispersed soils become considerably reduced 
and, consequently, the effectiveness of cement 
utilization is correspondingly increased. Small 
admixtures of cement become distributed in the 
treated soil as separate outcroppings which are 
not interconnected and do not form a continuous 
lattice skeleton. In this case the interaction of 
soil and cement is mainly directed toward increasing 
cohesion. With increasing cement content a gain in 
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mechanical strength and impermeability due to the 
formation of a branched soil-cement skeleton and 
to filling of the pores between the soil aggrega­
tions by the individual hydrating particles of 
cement is realized. 

Moisture is an important constituent in soil-cement 

mixtures. It is essential both for the compaction of the 

mixture and for the hydration of the cement. The moisture 

content used is that which will achieve the desired compacted 

density. This has been found adequate for the hydration of 

the cement. 

To explain the long term strength gains of soil-cement 

mixtures, Handy (14) proposed a theory of chemical cementa­

tion between the polarized (inert) surfaces of the soil 

particles and the hydrated cement. Hydroxyl ions from the 

hydrating cement gel are adsorbed by partially screened 

silica ions giving initially a weak bond. As time passes 

the surfaces of the soil particles become depolarized 

(active), and the original weak bond is improved, thereby 

gradually increasing the strength. 

Development of Soil-Cement Durability Tests 

In 1935, an extensive research program was undertaken by 

the Portland Cement Association to investigate the feasibility 

of cement as a soil stabilizer. This program was based upon 

previous experiments by several highway departments (22). 
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The moisture-density relationships developed by R. R. Proctor 

in 1929 were found applicable to mixtures of soil and cement. 

Thus soil-cement mixtures were able to attain the compaction 

necessary to produce a durable, stabilized material. By 1945 

this test was adopted as a standard by both A.S.T.M. and 

A.A.S.H.O. (1, 2). 

In order to properly evaluate the durability of the com­

pacted soil-cement mixture the samples were cured for 7 days 

in an atmosphere of high humidity. This permitted hydration 

of a significant portion of the cement before testing. The 

wet-dry and freeze-thaw tests were evolved from tests used 

for concrete mixtures. It was found that these tests would 

reproduce the internal forces caused by moisture changes in 

the field: the wet-dry test produces high shrinkage forces; 

however, the high temperatures used in the drying portion of. 

the test tend to accelerate cement hydration. The freeze-

thaw test produces high expansive forces in cohesive soils. 

This test avoids the accelerated cement hydration inherent 

in the wet-dry test. A brushing procedure to remove the 

loose material on the sample after each of 12 freeze-thaw or 

wet-dry cycles was developed to give consistent and reproduc­

ible results. 

The above tests were developed to determine the minimum 

cement content required to stabilize a soil adequately, and 

the following criteria for maximum permissible soil-cement 
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losses by brushing were established (28): 

Soil groups A-l, A-2-4, A-2-5, and A-3, not over 14% 

Soil groups A-2-6, A-2-7, A-4 and A-5, not over 10% 

Soil groups A-6 and A-7, not over 1% 

Research has indicated that the physical and chemical 

properties' of a soil have a great influence on the required 

cement content (32). These effects are so diverse and inter­

related that no simple relationship to determine the minimum 

cement requirement has been found. However the wet-dry and 

freeze-thaw tests evaluate the combined effects of these 

phenomena. 

The criteria of the freeze-thâw and wet-dry test to pro­

duce an adequate soil-cement mixture were determined on the 

basis of laboratory test data, outdoor performance of labora­

tory specimens, and field performance. These data include 

volume change, maximum moisture content, compressive strength, 

and soil-cement loss due to brushing (23). The tests were 

adopted as standards by A.S.T.M. and A.A.S.H.O. in 1945, and 

the' criteria have been validated by the successful field per­

formance of soil-cement mixtures in the last 25 years. 
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Alternates to the Standard Freeze-Thaw Test 

The freeze-thaw test has often been criticized as being 

too severe and not simulating field conditions. The frequency 

of freezing and thawing in a moderate climate is considered 

to have a more severe effect on the durability of soil-cement 

mixtures than fewer cycles in a colder climate. For example, 

40 freeze-thaw cycles per year in Kansas is considered more 

severe for soil-cement mixtures than 4 cycles per year in 

Minnesota (30). Soil-cement pavements in tropical areas, not 

subject to freezing, would not experience the great expansive 

forces that the freeze-thaw test simulates. The increased 

temperature of curing in these areas would also produce bet­

ter quality soil-cement mixtures (7). This could allow a 

smaller cement content than would normally be used. The 

present freeze-thaw test does not take these conditions into 

consideration. Also the freezing temperatures used are not 

considered representative of actual field conditions. 

The British Standard Freeze-Thaw Test (B.S. 1924:1957) 

determines the change in unconfined compressive strength of 

cohesive soils when subjected to specified conditions of 

freezing and thawing (21). No brushing tests are used since 

this is not thought to simulate field conditions. Also, 

freezing at a realistic temperature is conducted down from 

the top of the sample. This introduces a temperature 
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gradient into the sample which is consistent with actual con­

ditions. The strength loss is compared to a control sample 

continually immersed in water. A criticism of this test is 

that there is insufficient control of temperature conditions 

during the freezing period. 

The British Test has been modified in the Soil Research 

Laboratory of the Iowa Engineering Experiment Station (13). 

The Iowa State compaction apparatus is used. Climatic condi­

tions were modified to simulate the more severe climatic 

changes in Iowa. The criteria used were the unconfined com­

pressive strength and the index of resistance to freezing 

(the ratio of the unconfined compressive strength of the 

freeze-thaw specimen to that of the immersed control sample). 

Laboratory results, correlated with field trial base course 

sections, indicated that the test produced valid results and 

allowed a smaller cement content than was obtained from 

standard A.S.T.M. and A.A.S.H.O. tests. 

A complementary study (18) concluded that: 

1. The Iowa Freeze-Thaw Test is as dependable as the 

standard A.S.T.M.-A.A.S.H.O. freeze-thaw test. 

2. The cement requirements of a soil-cement mixture 

might eventually be determined by simple strength 

tests. This is based on a functional relationship 

between the 14 day unconfined compressive strength 

and the strength of the same mixture after 7 days 
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humid curing and 10 cycles of the Iowa Freeze-

Thaw Test. 

At the present time the Portland Cement Association is 

conducting considerable research into alternate methods of 

measuring freeze-thaw resistance of soil-cement mixtures (27). 

These include length change, unconfined compressive strength, 

and an accelerated procedure for the standard freeze-thaw 

test. Results indicate that length change measurements 

during freeze-thaw cycles might serve as a supplementary 

indication of durability. Compressive strength results are 

less conclusive. 

The accelerated procedure is perhaps the most interest­

ing development, since the present test requires 6 to 7 weeks 

to complete. With the use of an inexpensive cabinet with 

adjustable freeze-thaw periods, an accelerated 12 cycle test 

of 7 to 10 days seems feasible. Preliminary results indicate 

that this method of freeze-thaw testing may be developed to a 

significance equivalent to the standard test. 
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INVESTIGATION PART I 

The freeze-thaw test is generally the critical test in 

evaluating the required cement content. Three cement con­

tents are usually tested, and the minimum cement content 

which will meet the specified freeze-thaw loss is usually 

chosen as the required cement content. However, many soils 

have recommended cement contents which produce as low as 2% 

freeze-thaw loss, since the next lower cement content 

(usually 2% less) tested had a freeze-thaw loss greater than 

the allowable. Therefore in many cases the recommended 

cement content is greater than necessary. A cement content 

which could be selected between these two which would produce 

the exact specified freeze-thaw loss would result in more 

economical mix designs. 

These problems could be alleviated by a relationship 

between the cement content and the freeze-thaw loss of a 
- ^ 

soil-cement mixture. Also, a valid relationship would require 

testing of only 2 cement contents to establish the relation­

ship. Thus a relationship would introduce the possibility of 

reducing the number of cement contents required to conduct 

the freeze-thaw test. 
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Cement Freeze-Thaw Loss Relationship 

In order to obtain results which would apply to as 

general a case as possible, it was decided to investigate the 

existence of a relationship using data of a random nature. 

The data were randomly chosen from the files of the Portland 

Cément Association"*". These were data sheets of standard 

freeze-thaw tests which were conducted on soils from actual 

soil-cement projects throughout the United States during the 

last 20 years. 

A total of 568 freeze-thaw tests from 172 soil investi­

gations were used. The soils ranged from sandy to clayey, 

classified as A-2, A-3, A-4, A-6, and A-7 (A.A.S.H.O. designa­

tion M 146-49),. Any relationship obtained with these data 

should be valid when applied to the.most general situation. 

A preliminary graphical investigation indicated that a 

logarithmic relationship exists between the freeze-thaw loss 

{% original weight) and the cement content [% by weight) at 

which the specimen was molded (Figure 1). The cement content 

by volume was also investigated; however, the cement content 

on a weight basis gave better relationships. 

In order to evaluate the entire mass of data properly, 

a statistical analysis of the logarithmic relationships was 

^Ray, G. K., Portland Cement Association, Chicago, 
Illinois. Information on soil-cement test data. Private 
communication. 1961. 
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Figure 1. The relationship between the cement content and 
the freeze-thaw loss of soil-cement mixtures 
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undertaken. This was done with the use of the "IBM 650" 

digital computer at Iowa State University of Science and 

Technology. Closeness of the relationship is best indicated 

by the square of the correlation coefficient r. 

The term r indicates the degree of association or rela­

tion between the measured values of one property (cement 

content) and the corresponding measured values of another 

property (freeze-thaw loss), for a specified sample popula­

tion. This term varies from zero, which indicates that a 

perfect relationship exists and that one property can be 

accurately predicted from knowledge of the other. In general, 

a correlation coefficient greater than 0.9 is necessary for 

the correlation to permit predictions of one value from the 

other with a reasonable degree of accuracy. In this investi­

gation the proportion of the variance of the freeze-thaw 

loss that is accounted for by the freeze-thaw loss relation 

to the cement content is equal to ip-. 
p 

The statistical analysis indicated extremely high r 

correlations as shown in Appendix A. Thus it appears that 

the cement content by weight can be related, to within good 

approximation, to the freeze-thaw loss of a soil-cement mix­

ture. Although A-l and A-5 soils were not investigated, it 

would seem logical to assume that these would also follow a 

logarithmic relationship. 

In view of the random sample population used to develop 
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the relationship, the relationship seems to exist independ­

ently of : 

a. The geographical location and type of soil 

b. The technician conducting the freeze-thaw test 

c. The required cement content of the soil 

This relationship would also indicate that the freeze-thaw 

test can be accurately conducted by any trained technician. 

The logarithmic relationship is of the form: 

log L = A + B log C 

where 

L = Freeze-thaw loss [% original weight) 

C = Cement content {% by weight) 

A = Intercept at C = 1% cement 

B = Slope 

Since soil-cement mixtures with at least three cement 

contents are usually tested, a logarithmic plot may be con­

structed with these data. The relationship will reduce the 

error caused by any possible outliers in the data and reduce 

the possibility of arriving at erroneous conclusions. By the 

use of this relationship, the cement content which will give 

the maximum allowable freeze-thaw loss can be chosen. Econom­

ically, the ability to select the exact cement content to 

produce a specified freeze-thaw loss will result in more 
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economical mix designs. 

Another advantage of such a relationship is the reduc­

tion of the number of cement contents necessary to be tested. 

An experienced tester could conduct the freeze-thaw test with 

2 cement contents, and a logarithmic plot connecting these 

points would establish the relationship. The cement content 

which will give the required freeze-thaw loss may then be 

determined. It is best to obtain data which will fall on 

both sides of the specified freeze-thaw loss; an experienced 

tester should be able to choose cement contents which produce 

these results most of the time. 

It should be noted that all cement contents below the 

one that will produce 100% freeze-thaw loss will also indi­

cate 100% loss. In the same manner, all cement contents 

greater than the one which will give little or no freeze-thaw 

loss will also produce no freeze-thaw loss. Tests giving 

100% freeze-thaw loss and/or .0% loss might therefore lead to 

erroneous conclusions, and the use of data points between 

these extremes is recommended. 

Slope-Intercept Relationship 

Having established a relationship between the cement 

content and the freeze-thaw loss of a soil-cement mixture, 

an investigation was undertaken to determine if an overall 
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correlation exists between the individual logarithmic rela­

tionships of the data. A correlation might permit the 

logarithmic relationship to be established with a decreased 

number of data points (tested cement contents) and eliminate 

a great deal of the labor required to conduct the test. 

As stated previously, the relationship is of the form: 

log L = A + B log C 

where A and B are the constants which distinguish one rela­

tionship from another. Therefore any correlation of all the 

cement freeze-thaw equations must involve a relationship be­

tween these constants. 

A graphical analysis of these data indicated that an 

approximate linear relationship exists between the intercepts 

(A) and the slopes (B) of the equations. This relationship 

is indicated by the scatter diagram and fitted curve in 

Figure 2. The granular soils (A-2, A-3) tend to lie below 

the curve, whereas the fine-grained soils (A-6, A-7) tend to 

lie above the curve. Thus a difference between the granular 

and fine-grained soils is apparent in the scatter diagram. 

The curve which best represents this scatter diagram can 

be represented by the equation: 

A + 1.118B = 0.62 

From this equation it can be seen that the equation 
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Figure 2. The relationship between the slope and the 
intercept of the logarithmic cement freeze-
thaw relationships 
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represented by any point on the curve (an individual cement 

freeze-thaw relationship) is equal to a constant. Thus: 

+ 1.118 + 1.118 B^ = ... = Afi + 1.118 Bn 

If the general logarithmic equation is rearranged to : 

A + B log C = log L, 

it is seen from similarity with the above equation that at 

log C = 1.118 and log L - 0.62 the equation will be satisfied 

for all logarithmic relationships. In other words, all 

cement freeze-thaw relationships theoretically will pass 

through a common point. This point would be at: 

L = 4.2% freeze-thaw loss 

C = 13.1% cement 

Due to the apparent influence of soil type on the scatter 

diagram, it was decided to investigate each soil type sepa­

rately to determine more exact relationships. The resulting 

common intersections of the various soil types are shown in 

Table 1. It can be observed that as the soil type increases 

(becomes more fine-grained), the common intersection in­

creases in the "% freeze-thaw loss" , whereas the "% cement" 

remains approximately constant. This is in agreement with 

the scatter diagram of Figure 2. The individual relation­

ships of the soil types are approximately parallel. 



www.manaraa.com

25 

Table 1. Empirical common intersection of the logarithmic 
freeze-thaw relationships by soil type 

Soil type Common intersection 
% cement % freeze-thaw loss 

A-2 12.2 2.0 

A-3 13.0 2.8 

A-4 13.0 2.8 

A-6 13.0 5.0 

A-7 12.0 10.2 

Therefore the slopes (which represent the cement content) 

would be constant. The transition from granular to clayey 

soils would produce increasing intercepts (which represent 

the freeze-thaw loss). 

In order to investigate the possibility of the relation­

ships passing through the common intersection, a basic bound­

ary condition must first be satisfied. Since the freeze-thaw 

loss will decrease as the cement content increases, the slope 

of the logarithmic relationship must be negative. A soil-

cement mixture requiring a cement content greater than the 

cement coordinate of the common intersection would have to 

assume a positive slope. This would make a relationship 

through the intersection invalid. 

Sandy and silty soils (A-2, A-3, and A-4) have a usual 
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range of cement requirements from 5% to 12%; clayey soils 

have a usual range from 9% to 16% cement (28). For the most 

part this common intersection would not be applicable for A-6 

and A-7 soils, and therefore they were eliminated from this 

investigation. A-2, A-3, and A-4 soils were then investi­

gated to determine if this common intersection was applicable 

to these data. Since the common intersections for these soil 

types are similar, an average intersection of C = 12.6% 

cement and L = 2.4% freeze-thaw loss was assumed. 

In order to evaluate properly the theory that graphs for 

these soils would pass through this common intersection, it 

was decided to plot graphically the cement freeze-thaw rela­

tionships using all data points available. Thus the proximity 

of the relationships to the common intersection could be ob­

served. The graphical analysis of the data indicated that 

most relationships passed through, or in the vicinity of, 

the intersection. Typical relationships are shown in Figure 

3. An examination of the graph indicates that if any rela­

tionship is forced through the intersection, the required 

cement content (at 10% freeze-thaw loss) will not be greatly 

affected. 

With a common point established through which all rela­

tionships of A-2, A-3, and A-4 soils pass, only one cement 

content would require testing in order to establish the rela­

tionship and select the required cement content to produce a 
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Figure 3. The ability of the logarithmic cement freeze-thaw 
relationships of granular soil-cement mixtures to 
pass through the common intersection 
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durable soil-cement mixture. It would seem plausible that 

this method would also be applicable to A-l soils. 

Any granular soils which require a cement content greater 

than approximately 10.5% cement would have to give a nearly 

vertical or positive slope in order to pass through the.in­

tersection. Thus, as in the case of the clayey soils, these 

would not be adaptable to this method of prediction. An 

analysis of the data indicated that these soils could be 

eliminated by placing certain limitations on the result of 

the freeze-thaw test before applying this method. Other 

restrictions to increase the validity of the test were also 

observed. These limitations can be listed as follows : 

a. The cement content of the freeze-thaw specimen 

should be below 10% cement. 

b. The freeze-thaw loss should fall below 50% soil 

loss and above the maximum allowable loss. 

Granular soils which lend themselves to these criteria should 

require only one freeze-thaw specimen to evaluate the required 

cement content. 

A reasonable test to evaluate this theory, in keeping 

with the manner in which this method of prediction would be 

carried out in practice, is as follows: 

1. Determine the required cement content from the 

logarithmic cement freeze-thaw relationships 



www.manaraa.com

30 

using all data points (actual cement requirement). 

2. Subject to the prescribed limitations, determine the 

required cement content from the relationship con­

necting the data point in each set that had the 

lowest cement content with the common intersection 

(predicted cement requirement). 

3. Compare the predicted cement requirement with the 

actual cement requirement. 

As a preliminary, 10% freeze-thaw loss was considered the 

maximum allowable loss for all soil types in order to produce 

uniform results. Fifty-four sets of data were found to con­

form to the prescribed limitations. As an added test the 

actual and predicted cement requirements were compared to the 

cement requirements recommended by the Portland Cement Asso­

ciation (PCA). However, an absolute comparison is not valid 

for A-2 and A-3 soils since the PCA cement content for these 

soils was evaluated at 14% freeze-thaw loss. These results 

are shown in Appendix A. It can be observed that despite the 

slightly different criteria, the predicted and actual cement 

requirements compare favorably with those recommended by 

the PCA. 

Perhaps the best measure of the degree of accuracy of 

the predicted intersection is the use of the "Standard error 

of estimate (Sc)". This is a measure of deviation or degree 

of scatter of the points around the regression equation (in 
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this case the logarithmic cement freeze-thaw relationship). 

It provides an estimate of the uncertainty of the prediction 

of the predicted cement content from the actual cement con­

tent. Assuming that a normal distribution of errors is valid, 

about 66% of the observations will fall within the standard 

error; about 95% of the observations will fall within two 

standard errors (25). 

The standard error of estimate of the predicted from the 

actual cement requirements is shown in Table 2. The Sc of the 

individual soil types ranges from 0.65 to 0.75 with an average 

value of 0.65. The low average value is due to the large 

sample population of A-4 soils compared to the other soils. 

It can therefore be concluded, in light of the existing data, 

that the use of the predicted intersection will produce an 

accuracy of + 0.65% cement for 66% of the time, and an ac­

curacy of + 1.30% cement for 95% of the time. It is realized 

that these percentages may not be entirely accurate, since 

the variation measured by Sc includes a possible element of 

bias (inaccuracy), as opposed to error (imprecision), origi­

nating from the use of the common intersection point. 

It would also be of value to note whether the predic­

tions were on the safe or unsafe side (respectively greater 

or less than the actual cement requirement). These results 

are shown in Table 3. It is generally observed that A-2 and 

A-3 soils are on the safe side while A-4 soils are about 
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Table 2. The standard error of estimate of the predicted 
cement requirements from the actual cement require­
ments by soil type 

Soil type S {% cement) 2SC {% cement) 

A-2 0.75 1.50 

A-3 0.66 1.32 

A-4 0.65 1.30 

Average 0.65 " 1.30 

Table 3. Total 
use of 

number of safe and unsafe predictions by the 
the common intersection method by soil type 

Soil type Safe Unsafe Exact • Total 

A-2 8 4 2 14 

A-3 4 0 0 4 

A-4 14 18 4 36 
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evenly distributed. This is what might be expected from 

the predicted intersections of the individual soil types 

(Table 1). 

An A-2 soil has a predicted intersection at 2.0% freeze-

thaw loss. If the relationship were passed through the 

assumed intersection of 2.4% freeze-thaw loss, the slope of 

the relationship would be made less negative. Thus the re­

lationship would indicate a higher cement requirement and 

thereby predict on the safe side. An A-4 soil passed through 

an intersection lower than the one assumed would be expected 

to underpredict. However, due to the normally high cement 

requirements of A-4 soils, a steep slope is expected. There­

fore the relationship through the assumed intersection is not 

greatly altered, and an equal distribution results. A-3. 

soils would also be expected to underpredict, but perhaps due 

to the small sample population this was not observed. It is 

of interest to note that if the A-6 and A-7 soils were passed 

through the intersection, the invalidity of the line would 

also cause underprediction. 

Therefore it can be concluded that the predicted inter­

section can be employed to produce significant results. By 

the use of the standard error of estimate, adequate safety 

factors can be introduced to produce an accurate estimate of 

the required cement content. The reduction in the number of 

cement contents to be tested will significantly reduce the 
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labor required to conduct the freeze-thaw test. For example, 

two specimens may be molded at the same cement content, en­

hancing the accuracy of the test without doubling the labor. 

A freeze-thaw test conducted with one cement content, 

subject to the prescribed limitations, would be sufficient to 

evaluate the required cement content properly. For any random 

soil it might be difficult to choose a cement content which 

would fall within the limitations. However, in the case of a 

soil series (15) or soils where the cement requirement is ap­

proximately known, a cement content can be selected and the 

method used advantageously. For example, this method could 

be used in conjunction with the "Short cut test procedures 

for sandy soils" (24) for major projects in order to determine 

better the required cement content. Although A-6 and A-7 

soils were not investigated, this method might also be appli­

cable for certain of these soils which require low cement 

contents. 

Figure 4 is a graphical representation of the selection 

of the required cement content with one freeze-thaw specimen 

at 10% freeze-thaw loss. Similar graphs can be constructed 

for other allowable losses. Safety factors are easily in­

corporated into this type of graph. 
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Figure 4. Recommended cement content of soil-cement mixtures 
at 10% freeze-thaw loss by the common intersection 
method, applicable to A-2, A-3, A-4, and probably 
A-l soils 
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INVESTIGATION PART II 

The number of cycles of freeze-thaw testing was devel­

oped from exploratory tests on freezing temperatures, 

freezing time, thawing time, and soaking time. Twelve cycles 

were selected since they produced interpretable data and had 

a practical time limit. The brushing procedure was developed 

to remove the loosened material, which resulted in more con­

sistent and reproducible results. However, the fact that the 

standard test requires from 6 to 7 weeks to complete restricts 

its use in some instances. 

Any method either eliminating or reducing the number of 

cycles involved in the freeze-thaw test would be a major step 

in accelerating the test. Several correlated short-cut tests 

have been developed. One example is the "Department of 

Agriculture Soil Identification System " (19). Soils of the 

same series, horizon, and texture often require the same 

amount of cement. This will reduce the number of complete 

tests necessary when soil survey maps are available. The 

"Short-cut method for granular soils" (24) correlates data 

from durability tests to predict the required cement content. 

The gradation, density, and 7 day compressive strength are 

the only requirements to determine the cement requirement. 

The "Glycerol surface area determination" for fine-grained 

soils containing less than 45% silt has been correlated with 
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the required cement content from durability tests (10, 17). 

The forementioned short-cut methods have been a valuable 

tool in establishing the required cement content. However, 

due to the inherent physical and chemical diversity of soils, 

the only soundly established methods of determining the 

required cement content of a soil-cement mixture are the 

standard wet-dry and freeze-thaw tests. Therefore the 

Portland Cement Association has been developing the accel­

erated freeze-thaw test (27). 

The use of the logarithmic.cement freeze-thaw relation­

ship might provide another method to shorten the test without 

loss in the significance of the test. Twelve cycles of 

freeze-thaw is not necessarily the only number of cycles 

which will produce significant results. Other cycles which 

produce a logarithmic relationship might be useful in alter­

ing the test without a loss in its significance. 

Influence of the Number of Freeze-Thaw Cycles 

on the Logarithmic Relationship 

Since the logarithmic cement freeze-thaw relationship is 

valid at 12 cycles of freeze-thaw testing, it would be of in­

terest to investigate the possibility of a similar relation­

ship existing at other numbers of cycles. An extensive 

investigation was undertaken by Felt (12) to observe the 
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influence of cement content on the freeze-thaw loss. Freeze-

thaw cycles from 12 to 96 cycles were conducted. These data 

were investigated to observe the influence of the number of 

freeze-thaw cycles on the logarithmic relationship. 

A graphical analysis was first conducted. It can be 

seen in Figure 5 that the freeze-thaw test conducted at 

greater than 12 cycles will also produce an excellent rela­

tionship. It can also be observed that, as a first approxi­

mation, the relationships of each soil appear parallel. In 

order to confirm these observations, a statistical analysis 

was conducted with the "IBM 650" digital computer. These 

results are shown in Table 4. 
O 

It is seen that the r correlations are again very high 

for all cycles. The slopes of the A-2 and A-4 relationships 

appear to be about the same (3.76 average), while the slope 

of the A-7 soil increases directly with the number of cycles 

according to the equation: 

S = 0.056 C1 +2.4 

where: 

S = Slope (negative) 

C-̂  = Number of freeze-thaw cycles 

In order to investigate the applicability of these rela­

tionships below 12 cycles, data of 4 soils from a recent PCA 

study (26) were used. These soils were classified as 
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Figure 5. The effect of the number of freeze-thaw cycles on 
the logarithmic cement freeze-thaw relationship 
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Figure 5. (Continued) 
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Figure 5. (Continued) 
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o 
Table 4. r correlation coefficients and slopes of loga­

rithmic cement freeze-thaw relationships at various 
cycles of freeze-thaw loss 

o 
Soil type Number of r Slope 

freeze-thaw cycles 

A-2 12 0.997 4.48 

24 0.994 3.70 

60 0.999 3.57 

84 0.997 3.80 

96 0.995 3.24 

A-4 12 0.987 4.28 

24 0.960 4.32 

60 0.949 3.22 

84 0.935 3.48 

96 0.917 3.52 

A-7 12 0.930 3.10 

36 0.932 4.48 

48 0.954 5.02 

72 0.956 6.51 



www.manaraa.com

46 

A-l-b(O), A-4(5), A-4(8) and A-6(10). Freeze-thaw loss at 

2, 4, 6, 8, 10 and 12 cycles of testing was evaluated. 

Either 4 or 5 cement contents were used for each soil. 

A graphical analysis indicated that excellent loga­

rithmic cement freeze-thaw relationships exist between 6 and 

12 cycles. Below 6 cycles the freeze-thaw loss was almost 

negligible and the relationships were poor. The A-l-b and 

A-4 soils produced parallel relationships; the slope of the 

A-6 soil increased directly with the number of cycles. Thus 

the phenomena of the relationships of the data of Felt (12) 

and the Portland Cement Association (26) are similar. 

Based on the foregoing analysis of the 7 soils, it is 

concluded that: 

1. A valid cement freeze-thaw relationship exists for 

all soils between 6 and 96 cycles of testing. 

2. The relationships are parallel for A-l to A-4 soils 

(the slopes of the relationships are equal). 

3. The slopes of the relationships for A-6 and A-7 

soils increase directly with the number of cycles. 

These observed results would indicate that the loga­

rithmic relationship exists regardless of the number of 

cycles used to conduct,the freeze-thaw test. This would 

indicate that reproducible and interprétable results might 
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be obtained at other than 12 cycles of freeze-thaw testing. 

It is apparent that the specifications for maximum freeze-

thaw loss can be altered as the number of cycles are varied. 

For example, in the case of the A-2 soil, 14% freeze-thaw 

loss indicates a cement content of 7.9% cement. This cement 

content corresponds to 50% loss at 96 cycles. Thus if 96 

cycles were used as the criteria in the freeze-thaw test, 

50% loss would be considered the maximum allowable freeze-

thaw loss. 

Figure 6 is a plot of the maximum freeze-thaw loss per­

mitted as the number of cycles of the 3 soils of Felt (12) 

are varied. A transition in the shape of the curves can be 

observed from the sandy to clayey soils. The A-4 soil assumes 

a linear relationship. Figure 7 indicates that the A-2 soil 

becomes linear on a logarithmic plot, while the A-7 soil be­

comes linear on a semilogarithmic plot. Similar relation­

ships were observed with the PCA data (26). 

By the use of these linear relationships it should be 

possible to choose a maximum freeze-thaw loss at any number 

of cycles. This would be advantageous in developing a method 

to conduct the freeze-thaw test at a reduced number of cycles. 

For example, at 6 cycles of freeze-thaw the required cement 

content for the A-2 soil could be evaluated at 9% freeze-thaw 

loss. In the same way the A-4 and A-7 cement requirements 

could be evaluated at 7% and 5% freeze-thaw loss respectively. 
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Figure 7. Linear relationships of A-2 and A-4 soils required 
to evaluate the maximum allowable freeze-thaw loss 
at a reduced number of cycles 1 
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This reduction in the number of cycles would reduce by 50% 

the time required to conduct the test. 

The reduction in the number of cycles was further in­

vestigated with data supplied by the PCA"*". Seventy-three 

sets of data representing most soil types were investigated. 

Logarithmic relationships at 6 and 12 cycles were determined. 

The cement content at the specified 12 cycle freeze-thaw loss 

was chosen. This cement content was then used to evaluate 

the freeze-thaw loss which would result from 6 cycles of 

testing. Thus the relationships evolved in the first portion 

of this investigation have been found useful in selecting the 

specified freeze-thaw.loss required at 6 cycles of testing. 

The average freeze-thaw loss and the standard deviation at 6 

cycles are shown in Table 5. It is seen that the average 

freeze-thaw loss at 6 cycles to determine the required cement 

content generally decreases as the soil type increases. 

The standard deviations observed are due to both the 6 

cycle and 12 cycle logarithmic relationships. Thus the 

standard deviation due only to imprecision of the 6 cycle 

interpolation is less than that observed in Table 5. The 

table is an evaluation of the required 6 cycle loss predicted 

from a knowledge of the 12 cycle loss. However, due to the 

"'"Packard, R. G. , Portland Cement Association, Chicago 
Illinois. Information on soil-cement test data. Private 
communication. 1963. 
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Table 5. Average freeze-thaw loss after 6 cycles of testing 
necessary to produce the required cément content of 
individual soil types 

Soil type Number of 
soils tested 

Freeze-thaw loss at 6 cycles 
(% original weight) 

Average Standard deviation 

A-1 7 6.4 2.2 

A-2 14 6.5 1.8 

A-3 5 5.0 1.1 

A-4 22 3.3 1.2 

A-6 13 3.2 0.9 

A-7 12 2.3 1.2 

Table 6. Average freeze-thaw loss after 6 cycles of testing 
necessary to produce the required cement content of 
freeze-thaw soil groups 

Soil type Number of 
soils tested 

Freeze-thaw loss at 6 cycles 
{% original weight) 

Average Standard deviation 

A-1 
A-2 
A-3 26 6.0 1.7 

A-4 22 3.3 1.2 

>
 >
 

i 
i 

-J
 o
 

25 2.8 1.0 
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parallelism observed in the relationships of the granular 

soils, the predicted standard deviation of the loss at 12 

cycles from a knowledge of the 6 cycle loss would be the same 

on the logarithmic scale. Therefore, the coefficient of vari­

ation (the relative standard deviation) of 12 cycles of freeze-

thaw testing predicted from 6 cycles would be the same as the 

coefficient of variation of 6 cycles of freeze-thaw testing 

predicted from 12 cycles. 

These soils have been grouped according to their allow­

able freeze-thaw loss at 12 cycles; i.e., at 14%, 10% and 7% 

freeze-thaw loss. The average freeze-thaw loss and the 

standard deviation of these groups are shown in Table 6. The 

standard deviation measures the dispersion of a series; the 

greater the spread of the series, the greater the standard 

deviation of the series. Assuming a normal distribution of 

dispersion, 68.27% of the observations will fall within the 

standard deviation; 95.45% of the observations will fall 

within two standard deviations. The results in Table 6 indi­

cate that at 6 cycles a reduced freeze-thaw loss is obtained 

which is fairly consistent for each soil group. Thus it is 

evident that 6 cycles of testing might produce interprétable 

and reproducible results from which a valid criteria can be 

established. 
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Summary of Part II 

The foregoing investigation is based upon data from only 

a few soils and is not intended to produce any definite con­

clusions concerning the reduction in the number of freeze-

thaw cycles. It was conducted to show that the use of the 

cement freeze-thaw relationship might provide an effective 

method of reducing the number of cycles required for the 

test. It is believed that equally reproducible and signifi­

cant results can be obtained at a reduced number of cycles. 

Future research may utilize this method to good advan­

tage. Further•investigations with a great many soils would 

be necessary to establish the relationships of the slopes to 

the number of freeze-thaw cycles. This could be accomplished 

in the course of normal freeze-thaw testing of soil-cement 

mixtures by the Portland Cement Association. Samples could 

be weighed after each cycle and the relationships established. 

The determination of definite trends for various soil types 

could allow a reduced number of cycles to be established. 

A minimum number of cycles which would produce interpretable 

results could be forthcoming. The use of this method in con­

junction with the accelerated freeze-thaw test could reduce 

the entire freeze-thaw test to a minimum period of time. 
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CONCLUSIONS 

Although the freeze-thaw test was originally devised to 

measure the hardening effect of portland cement on soils, it 

has become useful as a reliable criterion for the determina­

tion of the durability of a soil-cement mixture. The great 

disadvantage of this test is the large amount of time and 

labor necessary to complete the freeze-thaw test. This in­

vestigation attempts, by correlation analysis, to reduce the 

amount of testing required to conduct a reliable freeze-thaw 

evaluation of a soil-cement mixture. 

An excellent logarithmic relationship was found to exist 

between the cement content and the freeze-thaw loss of a 

soil-cement mixture. This relationship is useful for deter­

mining the cement requirement which will produce the exact 

allowable freeze-thaw loss. This could result in more 

economical mix design of soil-cement mixtures. Freeze-thaw 

tests with two cement contents will establish the relation­

ship. When more than two cement contents are used, the 

relationship will obviate any outliers which might exist in 

the data. This will reduce any error in testing. 

The logarithmic relationships for A-2, A-3, and A-4 

soil-cement mixtures were found, approximately, to intersect 

at a common point. It is conjectured that all granular soil-

cement mixtures follow this rule. This can be of great value 
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when properly applied. A granular soil for which the approx­

imate cement content (below 10%) is known would require a 

freeze-thaw test with one. cement content to establish the 

relationship and determine, to within reasonable approximation, 

the required cement content. The standard error of estimate 

of this method was found to be 0.65% cement. 

The logarithmic relationship was found independent of 

the number of freeze-thaw cycles used in the test. This 

introduces the possibility of conducting the freeze-thaw test 

at a reduced number of cycles. Preliminary investigation of 

this method indicates that the time involved in the freeze-

thaw test can be reduced by 50% without loss in the signifi­

cance of the test. 

By the use of these relationships the time and labor 

required in the conduct of the freeze-thaw test can be 

greatly reduced. 

Suggested abbreviated procedures utilizing both relation­

ships are in Appendix B. Comparison of future results of 

these procedures and results of the full standard test will 

further indicate reliability of the abbreviated tests. 
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RECOMMENDATIONS FOR FUTURE RESEARCH 

It is believed that this investigation reveals several 

opportunities for future research in improving the freeze-

thaw test. These may be listed as follows: 

1. A study should be made to determine the reproduci­

bility of freeze-thaw loss at both 6 and 12 cycles 

of testing. This will determine whether the use of 

6 cycles of testing will produce interprétable and 

reproducible results equal to those presently ob­

tained after 12 cycles of freeze-thaw testing. 

2. An investigation of the 6 cycle logarithmic rela­

tionships might indicate that certain soils will 

give relationships which pass through a given point, 

similar to the relationships shown for granular 

soils at 12 cycles of testing. This would reduce 

the testing procedure to a minimum. 

3. The use of the accelerated freeze-thaw test (27) in 

conjunction with the abbreviated methods outlined in 

this investigation would reduce the time required to 

conduct the freeze-thaw test to a few days. The 

compatibility of these methods should be studied 

to determine the applicability of combining these 

procedures. 
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Field performance of soil-cement mixtures with 

cement requirements evaluated with 6 cycles of 

testing should be used to check the validity of 

the use of a reduced number of cycles in the freeze-

thaw test. 
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APPENDIX A 

Table 7. jp- correlation coefficients of logarithmic cement 
freeze-thaw relationships and comparison of cement 
requirements 

Soil tP- correlation Cement requirements (% by weight) 

type coefficient3 Actual*3 Predicted*3 PCAc 

0.990 5.0 5.0 6.0 
0.999 
0.981 6.8 8.0 7.1 
0.999 8.7 8.9 8.2 
0.950 7.6 8.3 7.0 
0.811 12.0 10.7 12.0 
0.999 6.2 6.3 6.1 
0.944 5.9 6.6 6.1 
0.793 
0.953 7.8 7.8 7.8 
0.798 
0.823 9.0 8.5 9.3 
0.916 
0.998 7.8 7.5 7.4 
0.975 
0.896 
0.994 4.5 4.8 5.0 
0.986 3.8 5.0 4.6 
0.950 6.5 6.4 6.3 
0.996 5.1 5.9 5.4 

ar^ correlation coefficients of logarithmic cement 
freeze-thaw relationships. 

^Comparison of the actual and predicted cement require­
ments by the slope-intercept relationship at 10% freeze-thaw 
loss. 

^Recommended cement requirements of the Portland Cement 
Association. 

^Cement requirement determined at 14% freeze-thaw loss 
for PCA and at 10% freeze-thaw loss for actual and predicted 
cement contents. 
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Table 7. (Continued) 

Soil correlation Cement requirements (% by weight) 

type coefficient3 Actual*3 Predicted*3 PCAc 

0.992 7.3 7.5 7.9 
0.996 8.0 8.4 9.8 
0.987 9.7 10.5 10.6 
0.951 
0.999 9.2 9.4 9.3 
0.947 
0.999 

0.999 8.7 8.8 9.0 
0.949 
0.846 6.8 7.5 8.7 
0.976 9.0 8.5 9.2 
0.975 
0.907 9.9 10.0 10.3 
0.971 
0.908 
0.987 10.4 10.2 10.8 
0.982 
0.945 7.2 7.2 7.6 
0.950 
0.987 
0.938 9.7 9.9 10.5 
0.937 7.5 8.3 8.1 
0.972 
0.910 
0.829 9.7 8.4 8.8 
0.948 
0.878 7.4 8.6 8.3 
0.924 
0.978 
0.923 6.9 7.3 8.2 
0.905 9.6 9.8 10.5 
0.905 8.2 8.1 9.3 
0.882 
0.978 
0.913 
0.806 11.2 10.0 11.9 
0.965 
0.866 

eCement requirement determined at 10% freeze -thaw loss. 
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Table 7. (Continued) 

Soil r^ correlation Cement requirements (% by weight) 
type coefficient3 Actual*3 Predicted*3 PCAc 

0.900 
0.979 
0.997 
0.874 
0.868 
0.908 10.0 9.5 11.0 
0.934 
0.875 
0.965 
0.999 9.3 9.5 10.7 
0.932 
0.950 5.9 5.6 6.1 
0.959 
0.983 7.6 7.4 8.1 
0.806 10.6 10.8 12.1 
0.994 
0.894 9.1 9.4 9.8 
0.963 
0.938 8.7 8.5 9.0 
0.946 8.8 10.1 10.1 
0.934 
0.994 12.2 10.5 12.6 
0.990 10.0 9.6 10.2 
0.980 10.3 10.3 10.8 
0.962 8.2 8.2 9.0 
0.998 10.2 9.4 10.3 
0.974 
0.893 8.3 8.6 9.0 
0.993 8.0 7.8 9.3 
0.963 7.7 7.5 7.6 
0.978 7.2 6.6 7.6 
0.891 
0.873 7.0 6.8 7.6 
0.992 
0.928 
0.878 6.5 7.2 6.8 
0.982 8.2 7.4 8.1 
0.998 
0.806 
0.897 
0.986 
0.977 6.8 6.2 7.2 
0.968 7.2 7.2 7.2 
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Table 7. (Continued) 

Soil correlation Cement requirements (% by weight) 

type coefficient3 Actual*3 Predicted*3 PCAc 

A-6 0.997 
0.991 
0.953 
0.999 
0.940 
0.998 
0.991 
0.993 
0.965 
0.907 
0.969 
0.943 
0.928 
0.998 
0.974 
0.990 
0.991 
0.973 
0.997 
0.992 
0.985 
0.948 
0.977 
0.999 
0.995 
0.831 
0.896 
0.994 
0.997 
0.986 
0.999 
0.914 
0.880 
0.997 
0.948 
0.998 
0.999 
0.910 
0.888 
0.992 
0.988 



www.manaraa.com

68 

Table 7. (Continued) 

Soil correlation Cement requirements (% by weight) 

type coefficient3 Actual*3 Predicted*3 PCAc 

A-6 0.958 
0.820 
0.931 
0.915 
0.889 

A-7 0.997 
0.860 
0.955 
0.909 
0.886 
0.969 
0.979 
0.961 
0.998 
0.999 
0.879 
0.937 
0.922 
0.932 
0.937 
0.972 
0.927 
0.983 
0.979 
0.959 
0.999 
0.909 
0.993 
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APPENDIX B 

Tentative Abbreviated Freeze-Thaw Tests 

for Determining Cement Requirements for Soil-Cement Mixtures 

1. For a more accurate method of selecting the required 

• cement content using the present method of freeze-thaw 

testing : 

a. Plot the cement contents (% by weight) against the 

freeze-thaw losses (% by weight) on logarithmic 

paper; 

b. Draw the best straight line through these points; 

c. From this line, select the cement content correspond­

ing to the maximum allowable freeze-thaw loss. 

Observation of the relationships will determine 

whether an increment of cement should be added to 

arrive at the cement requirement of the soil. 

2. If the soil classifies as A-1, A-2, A-3, or A-4 and the 

cement requirement is below 10% and is approximately 

known: 

a. Conduct the standard freeze-thaw test at the approxi­

mate cement content; 

b. If the freeze-thaw loss is below 50% and above the 

allowable loss, plot the freeze-thaw loss and cement 

content on logarithmic paper; 
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c. Connect this point with the common intersection point 

(12.6% cement, 2.4% freeze-thaw loss); 

d. From this line, select the cement content correspond­

ing to the maximum allowable freeze-thaw loss. 

Alternately a graph similar to Figure 4 will 

accomplish steps b, c and d. 

e. The above cement content may be revised, knowing 

Sc = + 0.65% cement, and keeping in mind that A-1, 

A-2 and A-3 soils generally predict on the safe side 

whereas A-4 soils generally have an equal distribu­

tion of safe and unsafe predictions. 

f. If the freeze-thaw loss is above 50%, a higher cement 

content should be tested; if below the allowable 

loss, good judgment will determine whether to use 

this cement content or to retest at a lower cement 

content. 

3. To determine the required cement content after 6 cycles 

of freeze-thaw testing: 

a. Follow the standard freezè-thaw test method up to 6 

cycles of freeze-thaw testing ; 

b. Plot the cement contents against the freeze-thaw 

losses on logarithmic paper; 

c. Draw the best straight line through these points; 

d. Select the cement content conforming to the following 

criteria for maximum permissible soil-cement losses 
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by brushing: 

Soil groups A-1, A-2 and A-3, not over 6.0% 

Soil groups A-4 and A-5, not over 3.3% 

Soil groups A-6 and A-7, not over 2.8% 

e. Knowing the standard deviation (Table 6), determine a 

cement content which should adequately stabilize the 

soil. 

4. To check the reliability of the results obtained by using 

either abbreviated method, compare to results obtained for 

each soil by the standard freeze-thaw test. Eventually 

it might be advisable to alter the criteria to obtain 

more valid results. 
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